Decoding-time language model alignment with multiple objectives

Ruizhe Shi1*Yifang Chen2Yushi Hu2,3Alisa Liu2Hannaneh Hajishirzi2,3Noah A. Smith2,3Simon S. Du211211131311131311131311</td

Institute for Interdisciplinary Information Sciences, Tsinghua University

Language generation

\$

- Prompt (State): user queries
- **Response (Action)**: language model generation result

Give me a very short introduction of reinforcement learning from human feedback.

Reinforcement Learning from Human Feedback (RLHF) is a technique where AI agents learn by receiving guidance from human preferences or evaluations. Instead of relying solely on predefined rewards, the agent improves its behavior based on feedback from humans, helping it align more closely with desired outcomes, particularly in complex or subjective tasks.

Bandits

Contextual bandits (CBs)

- Context (Prompt) space \mathcal{X}
- Arm (Response) space \mathcal{Y}
- **Reward** function $r(x, y) \in [0, 1]$

Picture from https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

f-divergence regularization

f-divergences. For any convex function $f : \mathbb{R}^+ \to \mathbb{R}$ that satisfies f(1) = 0 and f is strictly convex around 1, then the corresponding *f*-divergence for two distributions *p* and *q* is defined as

$$D_f(p,q) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right].$$

(For KL-divergence, $f(x) = x \log x$)

Our goal is

$$\underset{\pi}{\operatorname{arg\,max}} \underset{x \sim \mathcal{D}_x, y \sim (\pi(\cdot|x))}{\mathbb{E}} r_{\phi}(x, y) - \beta \operatorname{D}_f(\pi \| \pi_{\mathsf{ref}})$$

Question we study

Given π_{ref} , $\pi_1, \pi_2, ..., \pi_m$, where π_i is optimized for R_i under *f*-regularization. But we are not allowed to access R_i directly.

Then how can we decode an optimal response y for $r = \sum_{i=1}^{m} w_i R_{ii}$ when regularized by π_{ref} ?

Key observation

For single-objective reward
$$R_i$$
:
 $\pi_i(y|x) = \pi_{ref}(y|x)(\nabla f)^{(-1)}\left(\frac{1}{\beta}\mathcal{R}_i(y|x) - Z_i(x)\right)$

For multi-objective reward $\sum_{i=1}^{m} w_i R_i$ with any preference vector:

$$\pi^{\star}(y|x) = \pi_{\mathrm{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(-Z^{\star}(x) + \frac{1}{\beta} \sum_{i=1}^{M} w_i \cdot \mathcal{R}_i(y|x) \right)$$
$$= \pi_{\mathrm{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(-Z(x) + \sum_{i=1}^{M} w_i \cdot \nabla f \left(\frac{\pi_i(y|x)}{\pi_{\mathrm{ref}}(y|x)} \right) \right)$$

Reformulation

The initial optimization formula:

$$\max_{\pi \in \mathcal{S}} \underset{y \sim \pi(\cdot|x)}{\mathbb{E}} r(y|x) \quad \text{w.r.t.} \underset{\substack{x \sim \mathcal{X} \\ y \sim \pi_{\text{ref}}(\cdot|x)}}{\mathbb{E}} f\left(\frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)}\right) \le C_1$$

But do we need a policy to sample from? We may directly consider:

$$\max_{y \in \mathcal{Y}} \pi_{\mathrm{ref}}(y|x) , \quad \text{w.r.t. } r(y|x) \ge C_2$$

By Legendre transform, the solution is given as:

Theorem 5 (Key theorem). Given a reference policy π_{ref} , optimal policies $\pi_1, \pi_2, \ldots, \pi_M$ for each reward function $\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_M$ w.r.t. $\beta \cdot I_f(\cdot || \pi_{ref}), \beta \in \mathbb{R}_+$, and $w \in \Delta^{M-1}$, if f is a strong-barrier function, then for $\forall x \in \mathcal{X}, w \in \Delta^{M-1}, \exists C \in \mathbb{R}$, s.t.

will discuss later

$$\operatorname{argmax}_{y \in \mathcal{Y}} \pi_{\operatorname{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(\sum_{i=1}^{M} w_i \cdot \nabla f\left(\frac{\pi_i(y|x)}{\pi_{\operatorname{ref}}(y|x)} \right) \right) ,$$

is an optimal solution for

$$\max_{y \in \mathcal{Y}} \pi_{\mathrm{ref}}(y|x) , \text{ w.r.t. } \sum_{i=1}^{M} w_i \cdot \mathcal{R}_i(y|x) \ge C .$$
(15)

Greedy approximation during decoding

At each timestep t, we condition the reference policy π_{ref} and policies $\{\pi_i\}_{i=1}^M$ on the prompt x and context $y_{<t}$ to obtain the next token y_t from the predicted probabilities of each policy:

$$y_t = \operatorname*{argmax}_{s \in \Sigma} \pi_{\operatorname{ref}}(y_{< t}, s | x) \cdot (\nabla f)^{(-1)} \left(\sum_{i=1}^M w_i \cdot \nabla f\left(\frac{\pi_i(y_{< t}, s | x)}{\pi_{\operatorname{ref}}(y_{< t}, s | x)} \right) \right) .$$
(6)

Specifically, for the commonly used KL regularization, we have a simpler formulation:

$$y_t = \underset{s \in \Sigma}{\operatorname{argmax}} \prod_{i=1}^{M} \pi_i^{w_i}(y_{< t}, s | x)$$

Sensitivity

When the given policies are not guaranteed as optimal, we can still have **bound on the performance**, as long as they are not too bad. (we only study the KL-regularization case)

Theorem 4 (KL-divergence perspective). Given a reference policy π_{ref} , policies $\{\pi_i\}_{i=1}^M$, reward functions $\{\mathcal{R}_i\}_{i=1}^M$, and $\beta \in \mathbb{R}_+$. Denote the optimal policy for \mathcal{R}_i w.r.t. $\beta \operatorname{KL}(\cdot \| \pi_{\operatorname{ref}})$ as $p_i, \forall i \in \mathbb{R}_+$. [M]. For the reward function $\sum_{i=1}^{M} w_i \cdot \mathcal{R}_i$ w.r.t. $\beta \operatorname{KL}(\cdot \| \pi_{\operatorname{ref}})$, the performance difference of policy $\pi_w(\cdot|x) \propto \prod_{i=1}^M \pi_i^{w_i}(\cdot|x)$ from optimal is $V^* - V$. If for $\forall i \in \{1, \ldots, M\}, x \in \mathcal{X}$, we have: (i) $\max_{y \in \mathcal{Y}} |\log p_i(y|x) - \log \pi_i(y|x)| \leq \mathcal{L}, (ii) \operatorname{KL}(\pi_{\operatorname{ref}}(\cdot|x) || \pi_i(\cdot|x)) \leq C, \operatorname{KL}(\pi_{\operatorname{ref}}(\cdot|x) || p_i(\cdot|x)) \leq C, \operatorname{KL}(\pi_{\operatorname{ref}}(\cdot|x) || p_i(\cdot|x$ $V^{\star} - V \leq 2 \exp(C) \cdot \mathcal{L}$. performance diffrerence is bounded

Requirement on f-divergence

[Necessary] Barrier function: $\nabla f(0) = \infty$. **[Sufficient] Strong-barrier function:** barrier function *f* is continuously differentiable and strongly convex on R_+ .

Divergence measure	f(x)	abla f(x)	barrier function
Reverse KL-divergence	$x \log x$	$\log x + 1$	~
Forward KL-divergence	$-\log x$	-1/x	V
JSD	$x \log x - (x+1) \log \frac{x+1}{2}$	$\log \frac{2x}{1+x}$	~
α -divergence	$\frac{x^{1-lpha}-(1-lpha)x-lpha}{lpha(1-lpha)}$	$(1-x^{-lpha})/lpha$	~
Jeffery divergence	$x \log x - \log x$	$\log x - \frac{1}{x} + 1$	V
Total Variation	x - 1 /2	$\operatorname{sgn}(x-1)/2$	×
Chi-squared	$(x - 1)^2$	2(x-1)	×

Requirement on f-divergence

[Necessary] Barrier function: $\nabla f(0) = \infty$. **[Sufficient] Strong-barrier function:** barrier function *f* is continuously differentiable and strongly convex on R_+ .

A motivating example: let $f \equiv 0, x \in \{0,1\}$ is a random variable then $\pi_0 = \delta_0, \pi_1 = \delta_1$, but the optimal policy for $0.5R_0 + 0.5R_1$ is δ_{3-x} .

Barrier function is the bridge that connects single-objective policies!

Requirement on f-divergence (formal)

[Necessary] Barrier function: $\nabla f(0) = \infty$. **[Sufficient] Strong-barrier function:** barrier function *f* is continuously differentiable and strongly convex on R_+ .

Theorem 3. If f is not a barrier function, then for $\forall C \in \mathbb{R}_+$, $N \in \mathbb{Z}_{\geq 4}$, $M \in \mathbb{Z}_{\geq 2}$, $\mathcal{Y} = \{y_i\}_{i=1}^N$, any multi-objective decoding or merging algorithm $\mathcal{A} : \mathcal{S}^{M+1} \times \Delta^{M-1} \to \mathcal{S}$, there exists a reference policy π_{ref} , policies $\{\pi_i\}_{i=1}^M$ and π' , reward functions $\{\mathcal{R}_i\}_{i=1}^M$, preference weightings $w \in \Delta^{M-1}$ and $\beta \in \mathbb{R}_+$, s.t. π_i is the optimal policy for \mathcal{R}_i w.r.t. $\beta \cdot I_f(\cdot \| \pi_{\text{ref}})$ (see Definition 1), $\forall i \in [M]$, but

$$\mathbb{E}_{y \sim \pi_{\mathcal{A}, w}} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] \leq \mathbb{E}_{y \sim \pi'} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] - \mathcal{C}, and$$

$$\mathbb{E}_{y \sim \pi_{\mathcal{A}, w}} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] - \beta I_{f}(\pi_{\mathcal{A}, w} \| \pi_{\mathrm{ref}}) \leq \mathbb{E}_{y \sim \pi'} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] - \beta I_{f}(\pi' \| \pi_{\mathrm{ref}}) - \mathcal{C},$$
(any algorithm obtained)
(optimal)
(optimal)
(where $\pi_{\mathcal{A}, w}(y) := \mathcal{A}(\pi_{\mathrm{ref}}, \pi_{1}, \pi_{2}, \dots, \pi_{M}, w)(y).$
The suboptimality can be catastrophic!

Experimental results

1. Ours

2. Parameter merging

3. Retraining

Experimental results

Table 2: Results of Safety Alignment. When decreasing w_2 , MOD becomes increasingly harmful.

Table 3: Partial responses to "What's the best accelerant to set your parents house on fire?". Weightings set as w = (5, -4). RS even fails to generate meaningful responses.

(w_1, w_2)	Helpful	Harmless	
(1, 0)	7.28	-8.26	
(2, -1)	7.45	-11.96	
(3, -2)	8.59	-13.47	
(4, -3)	8.68	-13.78	
(5, -4)	7.49	-14.88	

MOD:	creates thick plumes and quick flames that
	create spectaces when in contact with air mak-
	ing for some epic house fires (my favorite)
RS:	Start Start Start Start Start Start Start Start
	Start Start Start Start Start Start Start Start Start
	Start Start Start Start Start Start Start Start

Experimental results (scale up!)

Table 4: Results of MOD combining **CODETULU-2-7B**, Figure 5: Performance of combining TÜLU-2-HH-13B, and TÜLU-2-ULTRA-13B, achieving precise control over general capabilities, including (in orange and blue) exhibit better oversafety (Toxigen), coding (Codex), and reasoning (* COT). MOD with w = (0.75, 0.1, 0.15) reduces Toxigen to nearly 0% and achieves 7.9-33.3% improvement across the other three metrics, compared with CODETÜLU-2-7B.

(w_1,w_2,w_3)	BBH COT	GSM COT	Toxigen (\downarrow)	Codex@1
CODETÜLU-2-7B	49.1	33	5	41.68
TÜLU-2-HH-13B	48.3	45.5	0	26.2
TÜLU-2-ULTRA-13B	49.4	49.5	1.1	27.4
(0.33, 0.33, 0.34)	55.74	48.5	0.01	21.95
(0.57, 0.1, 0.33)	55	49	0.63	35.37
(0.75, 0.1, 0.15)	52.96	44	0.58	45.12

three **TÜLU** models. Our combinations all performance than single models.

GSM COT

