Decoding-time language model alignment with multiple objectives

Ruizhe Shi^{1*} Yifang Chen² Yushi Hu^{2,3} Alisa Liu² Hannaneh Hajishirzi^{2,3} Noah A. Smith^{2,3} Simon S. Du² ³Allen Institute for AI ¹IIIS, Tsinghua University $\frac{2}{1}$ University of Washington

Institute for Interdisciplinary Information Sciences, Tsinghua University

Language generation

- **Prompt (State)**: user queries
- **Response (Action)**: language model generation result

feedback.

Reinforcement Learning from Human Feedback (RLHF) is a technique where AI agents learn by receiving guidance from human preferences or evaluations. Instead of relying solely on predefined rewards, the agent improves its behavior based on feedback from humans, helping it align more closely with desired outcomes, particularly in complex or

subjective tasks.

Bandits

Contextual bandits (CBs)

- **Context (Prompt)** space
- **Arm (Response)** space
- **Reward** function $r(x, y) \in [0,1]$

Picture from https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

f-divergence regularization

f-divergences. For any convex function $f : \mathbb{R}^+ \to \mathbb{R}$ that satisfies $f(1) = 0$ and f is strictly convex around 1, then the corresponding f -divergence for two distributions p and q is defined as

$$
D_f(p,q) = \mathbb{E}_{q(x)} \left[f\left(\frac{p(x)}{q(x)}\right) \right].
$$

(For KL-divergence, $f(x) = x \log x$)

Our goal is

$$
\arg\max_{\pi} \mathop{\mathbb{E}}_{x \sim \mathcal{D}_x, y \sim (\pi(\cdot|x))} r_{\phi}(x, y) - \beta \, \mathrm{D}_f(\pi || \pi_{\text{ref}})
$$

Question we study

Given π_{ref} , π_1 , π_2 ,..., π_m , where π_i is optimized for R_i under f -regularization. \blacktriangle
But we are not allowed to access R_i directly.

Then how can we decode an optimal response y for $r = \sum_{i=1}^{m} w_i R_i$, when regularized by π_{ref} ?

Key observation

For single-objective reward
$$
R_i
$$
:
\n
$$
\pi_i(y|x) = \pi_{\text{ref}}(y|x)(\nabla f)^{(-1)}\left(\frac{1}{\beta}\mathcal{R}_i(y|x) - Z_i(x)\right)
$$

For multi-objective reward $\sum_{i=1}^{m} w_i R_i$ with any preference vector:

$$
\pi^{\star}(y|x) = \pi_{\text{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(-Z^{\star}(x) + \frac{1}{\beta} \sum_{i=1}^{M} w_i \cdot \mathcal{R}_i(y|x) \right)
$$

$$
= \pi_{\text{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(-Z(x) + \sum_{i=1}^{M} w_i \cdot \nabla f \left(\frac{\pi_i(y|x)}{\pi_{\text{ref}}(y|x)} \right) \right)
$$

Reformulation

The initial optimization formula:

$$
\max_{\pi \in \mathcal{S}} \mathop{\mathbb{E}}_{y \sim \pi(\cdot | x)} r(y | x) \quad \text{w.r.t.} \quad \mathop{\mathbb{E}}_{\substack{x \sim \mathcal{X} \\ y \sim \pi_{\text{ref}}(\cdot | x)}} f\left(\frac{\pi(y | x)}{\pi_{\text{ref}}(y | x)}\right) \leq C_1
$$

But do we need a policy to sample from? We may directly consider:

$$
\max_{y \in \mathcal{Y}} \pi_{\text{ref}}(y|x) , \quad \text{w.r.t. } r(y|x) \ge C_2
$$

By Legendre transform, the solution is given as:

Theorem 5 (Key theorem). Given a reference policy π_{ref} , optimal policies $\pi_1, \pi_2, ..., \pi_M$ for each reward function $\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_M$ w.r.t. $\beta \cdot I_f(\cdot || \pi_{ref})$, $\beta \in \mathbb{R}_+$, and $w \in \Delta^{M-1}$, if f is a strong-barrier function, then for $\forall x \in \mathcal{X}, w \in \Delta^{M-1}$, $\exists C \in \mathbb{R}$, s.t.

will discuss later

$$
\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \ \pi_{\text{ref}}(y|x) \cdot (\nabla f)^{(-1)} \left(\sum_{i=1}^{M} w_i \cdot \nabla f \left(\frac{\pi_i(y|x)}{\pi_{\text{ref}}(y|x)} \right) \right) \ ,
$$

is an optimal solution for

$$
\max_{y \in \mathcal{Y}} \pi_{\text{ref}}(y|x) , \text{ w.r.t. } \sum_{i=1}^{M} w_i \cdot \mathcal{R}_i(y|x) \ge C . \tag{15}
$$

Greedy approximation during decoding

At each timestep t, we condition the reference policy π_{ref} and policies $\{\pi_i\}_{i=1}^M$ on the prompt x and context $y_{< t}$ to obtain the next token y_t from the predicted probabilities of each policy:

$$
y_t = \underset{s \in \Sigma}{\operatorname{argmax}} \ \pi_{\text{ref}}(y_{< t}, s | x) \cdot (\nabla f)^{(-1)} \left(\sum_{i=1}^M w_i \cdot \nabla f \left(\frac{\pi_i(y_{< t}, s | x)}{\pi_{\text{ref}}(y_{< t}, s | x)} \right) \right) \ . \tag{6}
$$

Specifically, for the commonly used KL regularization, we have a simpler formulation:

$$
y_t = \underset{s \in \Sigma}{\operatorname{argmax}} \prod_{i=1}^{M} \pi_i^{w_i}(y_{< t}, s | x)
$$

Sensitivity

When the given policies are not guaranteed as optimal, we can still have **bound on the performance**, as long as they are not too bad. (we only study the KL-regularization case)

Theorem 4 (KL-divergence perspective). Given a reference policy π_{ref} , policies $\{\pi_i\}_{i=1}^M$, reward functions $\{\mathcal{R}_i\}_{i=1}^M$, and $\beta \in \mathbb{R}_+$. Denote the optimal policy for \mathcal{R}_i w.r.t. β KL $(\cdot \| \pi_{\text{ref}})$ as p_i , $\forall i \in$ [M]. For the reward function $\sum_{i=1}^{M} w_i \cdot \mathcal{R}_i$ w.r.t. β KL (\cdot $|\pi_{\text{ref}}\rangle$, the performance difference of policy $\pi_w(\cdot|x) \propto \prod_{i=1}^M \pi_i^{w_i}(\cdot|x)$ from optimal is $V^\star - V$. If for $\forall i \in \{1, ..., M\}, x \in \mathcal{X}$, we have: (i)
 $\max_{y \in \mathcal{Y}} |\log p_i(y|x) - \log \pi_i(y|x)| \leq \mathcal{L}$, (ii) $\boxed{\text{KL}(\pi_{\text{ref}}(\cdot|x)||\pi_i(\cdot|x)) \leq C}$, $\text{KL}(\pi_{\text{ref}}(\cdot|x)||p_i(\cdot|x)) \leq C$
 \cap $V^* - V \leq 2 \exp(C) \cdot \mathcal{L}$. performance diffrerence is bounded

Requirement on f-divergence

[Necessary] Barrier function: $\nabla f(0) = \infty$.
[Sufficient] Strong-barrier function: barrier function *f* is continuously differentiable and strongly convex on R_+ .

Requirement on f-divergence

[Necessary] Barrier function: $\nabla f(0) = \infty$.
[Sufficient] Strong-barrier function: barrier function *f* is continuously differentiable and strongly convex on R_{+} .

A motivating example: let $f \equiv 0$, $x \in \{0,1\}$ is a random variable then $\pi_0 = \delta_0$, $\pi_1 = \delta_1$, but the optimal policy for $0.5R_0 + 0.5R_1$ is δ_{3-x} .

Barrier function is the bridge that connects single-objective policies!

Requirement on f-divergence (formal)

[Necessary] Barrier function: $\nabla f(0) = \infty$.
[Sufficient] Strong-barrier function: barrier function *f* is continuously

differentiable and strongly convex on R_+ .
Theorem 3. If f is not a barrier function, then for $\forall C \in \mathbb{R}_+$, $N \in \mathbb{Z}_{\geq 4}$, $M \in \mathbb{Z}_{\geq 2}$, $\mathcal{Y} = \{y_i\}_{i=1}^N$, any multi-objective decoding or merging algorithm $A: S^{M+1} \times \Delta^{M-1} \rightarrow S$, there exists a reference policy π_{ref} , policies $\{\pi_i\}_{i=1}^M$ and π' , reward functions $\{\mathcal{R}_i\}_{i=1}^M$, preference weightings $w \in \Delta^{M-1}$ and $\beta \in \mathbb{R}_+$, s.t. π_i is the optimal policy for \mathcal{R}_i w.r.t. $\beta \cdot I_f(\cdot \| \pi_{\text{ref}})$ (see Definition 1), $\forall i \in [M]$, but

$$
\mathop{\mathbb{E}}_{y \sim \pi_{\mathcal{A},w}} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] \leq \mathop{\mathbb{E}}_{y \sim \pi'} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] = C, \text{ and}
$$
\n
$$
\mathop{\mathbb{E}}_{\text{max,sw}} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] - \beta I_{f}(\pi_{\mathcal{A},w} \| \pi_{\text{ref}}) \leq \mathop{\mathbb{E}}_{\text{max}} \left[\sum_{i=1}^{M} w_{i} \mathcal{R}_{i}(y) \right] - \beta I_{f}(\pi' \| \pi_{\text{ref}}) = C,
$$
\n
$$
\text{(any algorithm obtained)} \qquad \text{(optimal)}
$$
\n
$$
\text{where } \pi_{\mathcal{A},w}(y) := \mathcal{A}(\pi_{\text{ref}}, \pi_{1}, \pi_{2}, \dots, \pi_{M}, w)(y).
$$
\nThe suboptimality can be catastrophic.

Experimental results

1. Ours

2. Parameter merging

3. Retraining

Experimental results

Table 2: Results of Safety Align**ment**. When decreasing w_2 , MOD becomes increasingly harmful.

Experimental results (scale up!)

Table 4: Results of MOD combining CODETÜLU-2-7B, Figure 5: Performance of combining TÜLU-2-HH-13B, and TÜLU-2-ULTRA-13B, achieving precise control over general capabilities, including (in orange and blue) exhibit better oversafety (Toxigen), coding (Codex), and reasoning $(*$ COT). MOD with $w = (0.75, 0.1, 0.15)$ reduces Toxigen to nearly 0% and achieves 7.9–33.3% improvement across the other three metrics, compared with **CODET**ULU-2-7B.

three TÜLU models. Our combinations all performance than single models.

GSM COT

